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d’Anzizu s/n, E–08034 Barcelona, Spain
2 Departamento de Fı́sica, Universidad Simón Bolı́var, Apartado 89000, Caracas 1080A,
Venezuela

E-mail: Llorenc.Brualla@upc.es

Received 9 February 2001, in final form 30 August 2001
Published 19 October 2001
Online at stacks.iop.org/JPhysA/34/9153

Abstract
We present analytical approximations for the real Kelvin function ber x and
the imaginary Kelvin function bei x, using the two-point quasi-fractional
approximation procedure. We have applied these approximations to the
calculation of the current distribution within a cylindrical conductor. Our
approximations are simple and accurate. An infinite number of roots is also
obtained with the approximation and precision increases with the value of the
root. Our results could find useful applications in problems where analytical
approximations of the Kelvin functions are needed.

PACS numbers: 02.30.Gp, 02.30.Mv, 41.20.Jb

1. Introduction

Within the scope of special functions, Kelvin functions appeared early in the literature [1, 2].
They are derived from the Bessel functions [3] of complex argument and many formulae can
be found. In addition to their importance in mathematics, they also have a broad spectrum of
application in physics; for instance, in the analysis of the current distribution in cylindrical
conductors due to wave propagation [4]. A more interesting application is the problem of
determining the equivalent impedance of a cylindrical conductor which is given in terms
of ber x and bei x. Kelvin functions also arise in the problem of the wave impedance of
cylindrically layered conductors for application in nondestructive testing [5]. The temperature
distribution in cylindrical conductors due to an alternating current also involves ber x and bei x
[6]. Kelvin functions also appear in other fields (i.e. fluid mechanics), but in this paper we
will concentrate on the first electromagnetic application mentioned above.

One of the problems we have found in the applications of the Kelvin functions is that
their behaviour is rather complicated. Kelvin functions are oscillatory and the amplitude of
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the oscillations increases rapidly. In spite of the already existing tables, these functions are
still a part of integrands where these tables are difficult to use. The programs to compute these
functions are also too elaborate.

It seems convenient to have a good approximation to the functions, but the conventional
approximation methods do not give good results because of the pathological behaviour of the
functions. However, in this paper, it is shown how those difficulties can be surmounted by
using the recently published method of two-point quasi-fractional approximations [8, 9]. This
has allowed us to find analytical approximations to the Kelvin functions with good accuracy,
and furthermore, the same analytical approximation is valid for the whole range of positive
values of the variable.

Power series and asymptotic expansions are required in order to obtain these
approximations; thus we start analysing those expansions to proceed further. This will be
done in section 2 where the form of the approximation will also be derived. Later, the material
of this paper will be arranged as follows: the calculation of the parameters for the two-point
quasi-fractional approximation of ber x is carried out in section 3. Section 4 analyses the
results of the approximation. The same procedure applied to ber x in the previous sections
is employed in the calculation of bei x. This calculation and the a discussion of the results
obtained for bei x are presented in section 5. In section 6 we show its immediate application
to engineering. Finally, section 7 presents a discussion and conclusions of the paper.

2. Two-point quasi-fractional approximation form for the real Kelvin function

It is well known that the real Kelvin function is defined as [2]

ber x = � (J0
(
i
√

i x
))

(1)

where J0(z) is the zero-order Bessel function. The power series is given by

ber x = 1 −
(

1
4x2

)2

(2!)2
+

(
1
4x2

)4

(4!)2
− · · · . (2)

The asymptotic expansion of ber x has also been given in several references. Our interest here
is mainly in the leading term which can be written as

ber x ∼
ex/

√
2

(√
2+

√
2

2 cos
(

x√
2

)
+

√
2−√

2
2 sin

(
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2

))
√

2πx
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Once the potential series (2) and the asymptotic expansion (3) have been obtained, it is
possible to determine the form of the quasi-fractional approximations of the function ber x,
which has an essential singularity at infinity. That kind of singularity is characteristic of all the
hypergeometric confluent functions. The asymptotic expansion (3) picks up this singularity
and shows it up through a branch point at infinity together with essential singularities at infinity
of the exponential functions. Since the branch points come up in pairs, the leading term of the
asymptotic expansion also shows a second branch point at x = 0. However, the behaviour of
the function ber x is regular at x = 0; therefore, the asymptotic form in (3) is not suitable as
an approximation for ber x in the region near 0. In order to pursue the goal of picking up the
right behaviour at infinity, but not to introduce undesired singularities in the zone of interest,
a suitable auxiliary function has to be chosen. The auxiliary function should have the right
ramification form at infinity and the second branch point should be located outside the zone
of interest (i.e. the negative axis).
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Only powers of the form 4n appear in the potential series of ber x. In order to achieve
adequate efficiency in the approximation,we should find such auxiliary functions and fractional
approximations whose potential series only have exponents multiples of 4.

Since the second branch point introduced with the asymptotic expansion must be outside
the zone of interest, it is possible to choose as an auxiliary function A1(x) = 1/

√
1 + x;

however, that auxiliary function would not be efficient since undesired power terms such as
x2, x3, · · · would appear. A more suitable auxiliary function would be Ã1(x) = 1/

8
√

1 + x4

or Ã2(x) = 1/
8
√

1 + τ 4x4. However, in the last case, the parameter τ could be chosen in a
convenient way in order to get better accuracy with the approximation, and as we will discuss
later, this can be considered as a free parameter.

The other singularity that must be introduced through the auxiliary functions is of the

form ex/
√

2 cos
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x√
2

)
and ex/

√
2 sin

(
x√
2

)
. Efficiency criteria limit the auxiliary functions by

forcing them to have exponents of the form 4n. The above-stated line of thought leads us to
choose as convenient auxiliary functions

cosh
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)
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)
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x√
2

)
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. (5)

Once the auxiliary functions are chosen as above, the fractional approximations automatically
have only powers that are multiples of 4.

All these previous considerations lead to the following form of the two-point quasi-
fractional approximation for the real Kelvin function
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(6)

The auxiliary function
√

1 + α2x4 has to be introduced in order to cancel the 1/x2 behaviour
at infinity. With this function we also define a second free parameter α.

3. Calculation of the two-point quasi-fractional approximation
to the real Kelvin function

Here we will consider only the simplest approximation to ber x; thus n will be 1 and the
approximation in equation (6) will be reduced to

˜ber x =
(
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4
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8
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(7)

The ideas developed in the latest papers on quasi-fractional approximations are not to determine
all the coefficients through the powers series and the asymptotic expansions, but to leave one or
two free parameters—α and τ—that can be determined by minimizing the maximum absolute
error. It is clear that other methods to measure the discrepancy between the approximant and
the exact function can also be used, such as Lebesgue’s integral of the quadratic difference,
or other more elaborate methods using Lebesgue’s integrals of the p-powers of the difference.
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However, for us, the most convenient way to measure that discrepancy is the maximum
absolute error.

The main reason for using free parameters is to avoid the characteristic defects of classic
Padé [7], also common in quasi-fractional approximations. Defects are when an extraneous
pole appears near a zero in the numerator. That is, there is a zero in the numerator in x0

and another zero in the denominator in x1 and the difference |x0 − x1| is very small. Due to
that problem, the approximation is in good agreement with the function in the whole zone of
interest, except when it is close to x0 and x1 where it goes to +∞, −∞ and 0.

In order to determine the five unknowns p0, P0, p1, P1 and q, three terms of the power
series (2) and two terms of the asymptotic expansion (3) will be used. So a linear system of
five equations with five unknowns is obtained. The solutions will be given in terms of α and τ .

Looking at the exponential term in (3), the variable x/
√

2 appears more convenient. Thus
the power series (2) is written as

ber
(
x
√

2
)

= 1 − 1
16 x4 + 1

9216x8 − · · · (8)

since we are using only three terms of this series we do not need to go further than x8.
Now, to compare the power series of ber x and ˜ber x, we will first multiply both functions

by (1 + qx4) in order to rationalize the right hand side. Furthermore, the auxiliary functions
appearing in (7) and defined in (4) and (5) are replaced by their respective power series. Thus
we obtain

(1 + qx4)
(
1 − 1

16x4 + 1
9216x8) = (

1 − 1
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128τ 8x8)
× ((
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4)) + O(x12) (9)

where the first term in the first parenthesis on the right hand side is the power expansion of
8
√

1 + τ 4x4 and constant factors have been absorbed in the definition of the parameters τ and q.
After equalizing the powers x0, x4 and x8 on both sides of the equation, we obtain
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The leading term of the asymptotic expansion of ˜ber x is

˜ber x ∼ ex/
√

2
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And after comparing the leading terms of ber x, we obtain

p1 =
√

2 +
√

2
√

τq√
2π

(14)

P1 =
√

2 − √
2
√

τq√
2πα

. (15)

Equations (10–12), (14) and (15) determine the values of p0, P0, p1, P1 and q as functions of
α and τ .

When these equations are solved, an expression for each parameter is obtained in terms
of α and τ and an approximation ˜ber(x, α, τ ) is defined for each value of α and τ .
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Figure 1. Kelvin real function and its two-point quasi-fractional approximation along with ten
times the discrepancy between them.

Given the initial values α0 and τ 0, we numerically determine the value of the function
| ˜ber(x, α, τ ) − ber(x)| and select the maximum value of this function which will be the
maximum absolute error. Therefore, the maximum absolute error, ε(α, τ ), will be a function
of α and τ . Now looking at ε(α, τ ) as a function, we can determine the values αm and τm

which minimize this function as a two-variable function. That procedure has been followed
and the values αm and τm are found as

αm = 0.98 τm = 0.8367.

In order to avoid the defect in the approximation, we have to consider only positive values
of q; thus there is no problem with positive values for the variable x which is the region of
interest. This must be taken into account when sweeping through α and τ in the minimizing
procedure. Local minima which yield negative values for q must be discarded.

Using these values of α and τ in (10)–(12), (14) and (15), the parameters p0, P0, p1, P1

and q are determined and the results are

q = 27 627.311 660

p0 = −9750.649 914 P0 = 19 503.300 340

p1 = 18 628.544 300 P1 = 7873.669 071.

4. Accuracy of the two-point quasi-fractional approximation to the real Kelvin function

As has been stated before, the discrepancy in the approximation will be determined by
�ber x = ber x − ˜ber x.

A plot of the real Kelvin function, together with the approximation and ten times the
absolute error is displayed in figure 1.
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Table 1 shows the first five roots of the Kelvin function and the introduced approximation.

Table 1. Comparison between the first five roots of ber x and ˜ber x.

ber x roots ˜ber x roots Relative error (%)

2.848 92 2.786 20 2.2
7.238 83 7.220 30 0.26

11.673 96 11.662 66 0.094
16.113 56 16.105 48 0.052
20.554 63 20.548 34 0.032

Note that the highest relative error in the roots is the first one. Quasi-fractional
approximations to any function normally have their worst accuracy for values of order 1.
The behaviour of the approximation becomes more accurate as x increases.

Another two measures of the good agreement of the approximation with the real Kelvin
function are the relative difference of the position in x of the maxima of the function and the
relative error of the amplitude of each maximum. Table 2 shows the position in x of the first
five maxima of ber x and ˜ber x as ber′ x and ˜ber

′
x, respectively, and the relative difference

between them. The value of each of the first five maxima is also shown, appearing as berm x

and ˜berm x for the real Kelvin function and the approximation, respectively. The relative error
in those figures is also presented.

Table 2. Comparison between the first five maxima of ber x and ˜ber x and their derivatives.

ber′ x ˜ber
′
x Error (%) berm x ˜berm x Error (%)

6.038 71 6.0215 0.28 −8.864 04 −8.614 84 2.9
10.513 64 10.5027 0.10 153.782 151.237 1.7
14.968 44 14.9605 0.053 −2 968.68 −2 933.93 1.2
19.417 58 19.4114 0.032 60 161.2 59 616.8 0.92
23.864 30 23.8592 0.021 −1.253 74 × 106 −1.2445 × 106 0.75

Note that all the relative errors, no matter what is being measured (i.e. the roots, the
position of the maxima or the amplitude) decrease as x becomes greater.

5. Calculation of the two-point quasi-fractional approximation
for the imaginary Kelvin function

The same line of thought carried out for the real Kelvin function will be followed in this
section, since the form of the asymptotic expansions and the power series for both ber x and
bei x are very similar.

The imaginary Kelvin function is defined as [2]

ber x = �(J0(i
√

i x)) (16)

where J0(z) is the zero-order Bessel function. The power series of bei x is given by

bei x = 1

4
x2 −

(
1
4 x2

)3

(3!)2
+

(
1
4x2

)5

(5!)2
− · · · · (17)
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The asymptotic expansion of bei x has also been given in several references. Again, our
interest here lies mainly in the leading term, which can be written as

bei x ∼
ex/

√
2

(√
2+

√
2

2 sin
(

x√
2

)
−

√
2−√

2
2 cos

(
x√
2

))
√

2πx
. (18)

It is a characteristic of hypergeometric confluent functions to have an essential singularity at
infinity. The asymptotic expansion picks up that singularity and shows it through a branch
point at infinity with the exponential functions in the same way as for ber x.

The power series of bei x is x2, x6, x10, . . . . In order to have an efficient approximation,
the auxiliary functions chosen for moving the artificially introduced branch point out of the
positive axis and for introducing the singularities that appear in the asymptotic expansion
should have a power series of the same form as bei x.

Following the same reasoning used in determining the form of ber x, a correct form for
the quasi-fractional approximation of bei x is

˜bei x =
x2√

1+ᾱ2x4

∑n
k=0 p̄kx

4k cosh
(

x√
2

)
cos

(
x√
2

)
+
∑n

k=0 P̄ kx
4k sinh

(
x√
2

)
sin
(

x√
2

)
(
1 +

∑n
k=1 q̄kx4k

) 8
√

1 + τ̄ 4x4

(19)

where ᾱ and τ̄ are the free parameters introduced for the same reason as explained for ber x.
Here we use only the simplest form of the approximation, thus n = 1 will be substituted in the
previous equation. Therefore, the two-point quasi-fractional approximation of bei x will give

˜bei x =
x2√

1+ᾱ2x4

(
p̄0 + p̄1x

4
)

cosh
(

x√
2

)
cos

(
x√
2

)
+
(
P̄ 0 + P̄ 1x

4
)

sinh
(

x√
2

)
sin
(

x√
2

)
(1 + q̄x4)

8
√

1 + τ̄ 4x4
.

(20)

From now on, exactly the same procedure is followed in determining the set of five equations
used for finding the values of the parameters p̄0, P̄ 0, p̄1, P̄ 1 and q̄ in terms of ᾱ and τ̄ and for
minimizing the discrepancy of the approximation.

When dealing with quasi-fractional approximations, it is common to take as an initial
ansatz α and τ equal to 1. This choice proved to be a valid starting point for ˜ber x, even though
smaller differences are obtained when using the minimized ᾱm and τ̄m given in the previous
section. The ˜bei x function is somewhat more pathological, since the choice ᾱ = τ̄ = 1 yields
a negative value of q̄, making the initial ansatz useless.

For minimizing the maximum absolute error of the two-point quasi-fractional
approximation of bei x, a downhill simplex method is used [10]. The values obtained for
the parameters are

ᾱm = 3.00 τ̄m = 3.00 q̄ = 19.110 549 40

p̄0 = −7.212 359 48 P̄ 0 = 15.424 718 96

p̄1 = −30.320 389 57 P̄ 1 = 24.399 965 23.

The plots of bei x, ˜bei x and ten times the absolute error (10�b̃eix = 10(b̃eix − bei x)) are
shown in figure 2.

The relative error of the first root (table 3) is smaller than that of the first root of ber x
because the value of the variable x is greater (i.e. the first root of bei x is not as close to zero as
that of ber x). The accuracy of all the roots of ber x and bei x is very high in any case.
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Figure 2. Kelvin imaginary function and its two-point quasi-fractional approximation, along with
ten times the discrepancy between them.

Table 3. Comparison between the first five roots of bei x and ˜bei x.

bei x roots ˜bei x roots Relative error (%)

5.026 22 4.998 73 0.55
9.455 41 9.441 10 0.15

13.893 49 13.884 00 0.069
18.333 98 18.326 89 0.037
22.775 44 22.769 77 0.024

Once again, the relative error related to the position of the first five maxima of the function
and the error of their amplitude is calculated in the same way as for ber x, and is presented in
table 4. The notation is exactly the same as that followed in the calculation of the error for
ber x in section 4 but adapted for the function bei x.

6. Analytical approximation to the current distribution within a cylindrical conductor

The expression for the current distribution within a cylindrical conductor due to a travelling
wave is given in many references. The current distribution depends on the Kelvin real and
imaginary functions and is given by [4]∣∣∣∣Jz(r)

Js

∣∣∣∣ =
(

ber2(
√

2r/δ) + bei2(
√

2r/δ)

ber2(
√

2r0/δ) + bei2(
√

2r0/δ)

)1/2

(21)
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Table 4. Comparison between the first five maxima of bei x and ˜bei x and their derivatives.

bei′ x ˜bei′ x Error (%) beim x ˜beim x Error (%)

3.773 20 3.743 07 0.80 2.346 15 2.259 3.9
8.280 99 8.267 18 0.17 −36.165 4 −35.408 9 2.2

12.742 15 12.732 9 0.073 670.16 660.955 1.4
17.193 43 17.186 5 0.040 −13 305.5 −13 169.6 1.1
21.641 14 21.635 6 0.026 273 888 271 661 0.82

0 0.1 0.2 0.3 0.4 0.5
−  0.03

0.00

0.03

0.06

0.09

0.12

0.15

Figure 3. Plots of the discrepancy between the analytical current distribution within the cylindrical
conductor and the results obtained with a two-point quasi-fractional approximation for four different
values of the skin depth.

where Js is the current density on the surface of the conductor and r0 is the radius on the
surface. Skin depth is given by δ and it depends on the frequency of the propagating wave
(table 5).

By means of the substitution of ˜ber x and ˜bei x in (21), it is possible to get an analytical
approximation to the current distribution within the cylindrical conductor.

The analytical approximation obtained is used to study the current distribution within a
copper wire with r0 = 0.5 mm. Four different values of the frequency are taken. The same
figures and plots are found in Marion and Heald [4] for comparison.

The plots obtained using our approximation and those obtained using numerical
computation are coincident and no difference can be found at this scale. Therefore, we
only show the errors in figure 3.



9162 L Brualla and P Martin

Table 5. Skin depth at different frequencies.

Case ν = ω/2π δ (mm)

1 103 2.1
2 104 0.66
3 105 0.21
4 106 0.066

7. Conclusions

In this paper, analytical approximations have been found for the functions ber x and bei x.
These have been used to calculate the current distribution within the cylindrical conductor
produced by the propagation of one wave of frequency ω.

In spite of the strong fluctuations characteristic of the functions ber x and bei x, the simple
approximations found here not only reproduce the function with high accuracy for all positive
values of the variable, but also infinite roots or zeros of the function are obtained and the
relative error of each root decreases with the magnitude of the root. The largest relative error
of the roots for ber x is about 2% and for bei x is 0.5%.

The measure of discrepancy is difficult for these functions because the function fluctuates;
and furthermore, the maximum of the amplitude increases and goes to infinity with x.
Therefore, if we consider the absolute error this will go to infinity with x.

On the other hand, if we study the relative error, these errors will go to infinity at the roots
of the function. The best way to measure the good agreement of our approximation is just
through the errors of the zeros and of the amplitude of the oscillations. It is significant that
these errors decrease with x despite the large value of the functions. The maximum error of
amplitude for ber x is 3%, and 4% for bei x in the value of the function and 0.28% and 0.80%
at the site of the maximum for ber x and bei x, respectively.

These errors clearly show that our approximation can be used for most of the applications
we know presently; for example, thermo-electrical corrosion in the cylindrical conductors. In
general, these approximations are used whenever Kelvin functions appear and a numerical
solution is not appropriate. As an example, we apply our method to the simplest case of the
current distribution in a cable, obtaining quite accurate results.
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